
Extra Better
Program
Finagling (eBPF)
Attack & Defense

Richard Johnson | ToorCamp 2022

whoami

Richard Johnson

Sr. Principal Security Researcher, Trellix

Owner, Training Instructor, Fuzzing IO
Advanced Fuzzing and Crash Analysis Training

rjohnson@fuzzing.io // @richinseattle

mailto:rjohnson@fuzzing.io

Hooking the Linux ELF Loader

● Long ago at Toorcon 6 in 2004, I presented on
hooking Linux linking and loading with custom kernel modules

○ md5verify – A tripwire inspired hash integrity checker for loaded executables
○ Kinfect – An ELF .plt virus injected from kernel into programs during load

● Today we will revisit these ideas using the latest Linux kernel provided
tracing infrastructure known as eBPF

What’s this all about?

● Linux Tracing Infrastructure
● Linux eBPF hooking API and ecosystem
● ELF linking, loading, and libc (oh my!)
● ebf-elf-trace – log ELF loading
● ebpf-hasher – hash ELFs to enforce ACLs
● ebpf-squirt – inject ROP or shared library
● Bugs, quirks, tips, tricks, and fortune telling

Linux Tracing Infrastructure

Linux Tracing

● Linux tracing infrastructure has
grown organically over time
resulting in many technologies
with overlapping goals and
capabilities

Linux Tracing

● Linux tracing infrastructure has
grown organically over time
resulting in many technologies
with overlapping goals and
capabilities

STRACE

Linux Tracing

● Linux tracing infrastructure has
grown organically over time
resulting in many technologies
with overlapping goals and
capabilities

STRACE

Linux Tracing

● Linux tracing infrastructure has
grown organically over time
resulting in many technologies
with overlapping goals and
capabilities

STRACE

Linux Tracing

● Linux tracing infrastructure has
grown organically over time
resulting in many technologies
with overlapping goals and
capabilities

STRACE

Linux Tracing

● Linux tracing infrastructure has
grown organically over time
resulting in many technologies
with overlapping goals and
capabilities

STRACE

● Linux tracing infrastructure has
grown organically over time
resulting in many technologies
with overlapping goals and
capabilities

● eBPF the new contender!

Linux Tracing

STRACE

Tracing Ecosystem – Trace Sources

● uprobe – inject int3 interrupt for user code hook, arbitrary locations
● kprobe – inject int3 interrupt for kernel code hook, arbitrary locations
● Tracepoints – Source annotations for hooks, compiled in

○ Kernel source
○ LTTng-ust – Userspace compile time hooking, avoids context switches
○ usdt – Userspace compile time Dtrace hooks

Tracing Ecosystem – Trace Collection

● perf_events – ring buffers for passing system events to userspace
● ftrace – logs Tracepoint events to ring buffers available via filesystem

○ /sys/kernel/tracing
● SystemTap LKM – legacy tracing for Linux, tied to kernel versions
● LTTng LKM – larger ecosystem better support for tracing non-native

code, more complex but more capable (java, python, etc)
● eBPF – perf_events or eBPF maps, which are memory maps with

associated file descriptors passable between user and kernel threads

Tracing Ecosystem – Frontend Tooling

● strace – trace system calls from userspace
● perf trace – receive events from perf system for syscall tracing
● ftrace – filesystem based access to hooks and filters
● DTrace – legacy tracing system for user/kernel, awk style language
● SystemTap – DTrace inspired awk language for tracing Linux
● LTTng – faster Tracepoint tracing

Tracing Ecosystem – ftrace

● ftrace provides a
cumbersome file based
interface for collecting data
but allows quick exploration
of sources and filters

Tracing Ecosystem – ftrace

● ftrace provides a cumbersome
file based interface for
collecting data but allows
quick exploration of sources
and filters

● Output is provided in
/sys/kernel/tracing/trace_pip
e

Linux Tracing Capabilities

● Instrument function entry points
● Instrument function return
● Instrument arbitrary code locations
● Access register context
● Read/Write memory*
● Trace system events
● Support user mode and kernel mode instrumentation

Linux eBPF hooking API and
ecosystem

eBPF

● The Extended Berkeley Packet Filter (eBPF) is an expanded engine for
runtime system tracing originally built on top of the same engine as
the bpf filters used in tools like tcpdump

eBPF

● The Extended Berkeley
Packet Filter (eBPF) is an
expanded engine for
runtime system tracing
originally built on top of
the same engine as the bpf
filters used in tools like
tcpdump

eBPF

● The Extended Berkeley
Packet Filter (eBPF) is an
expanded engine for
runtime system tracing
originally built on top of
the same engine as the bpf
filters used in tools like
tcpdump

eBPF

eBPF Frontend Tooling

● LLVM BPF bytecode target
● bpftrace – provides dtrace/awk inspired scripting frontend
● eBPF Compiler Collection (bcc)

○ Python and Go support
○ Compile eBPF programs on the fly or load ELF .o files with bytecode

● libBPF
○ Newer API
○ Compile Once Run Everywhere CoRE
○ No kernel headers or on-box compile requirement

bpftrace

● bpftrace oneliner to trace all files being opened

bpftrace -e 'tracepoint:syscalls:sys_enter_open { printf("%s

%s\n", comm, str(args->filename)); }’

● Very similar to DTrace
dtrace -q -n 'syscall::open:entry { printf("%s %s\n",

execname, copyinstr(arg0)); }'

bpftrace

eBPF Frontend Tooling

● libBPF is the future with enhanced symbols, portable bpf bytecode
● For now, BCC infrastructure is by far the easiest infrastructure

available to write custom eBPF programs
○ Python and Go loaders compile BPF programs on the fly
○ ELF segment layouts and other internals are abstracted away from the user

● Bpf-trace and ftrace can be used for initial system inspection before
writing more sophisticated hooking functions with BCC

eBPF BCC (gobpf)

eBPF BCC (gobpf)

● Kprobe handler is defined in bpf_hooks.c and registered from the go
code

eBPF BCC (gobpf)

● The
bpf_hooks.c
code defines
the hook
handler for
execve

eBPF BCC (gobpf)

● uprobes are just as simple and can be injected into any library
including ld-linux.so functions which are not debuggable with gdb)

ELF linking, loading, and libc
(oh my!)

Intercepting Process Execution

● We need to understand the flow of how the operating system loads
and executes programs

● We will find hook locations that allow us to collect metadata about the
process and allow us to perform hashing of memory

● Finally we need to gain execution control in the process to terminate
or infect processes

Linux Process Creation

● Linux Loader
○ Load binary into memory
○ Perform relocations on ELF sections
○ Pass control to the runtime linker

● Runtime Linker (linux-ld.so)
○ Map shared libraries to process memory
○ Perform relocations on symbols
○ Return process execution to program's entry point

Linux Process Creation

● libc execve()
● kernel sys_execve()
● do_execve()
● do_execveat_common()
● bprm_execve()

Linux Process Creation

● libc execve()
● kernel sys_execve()
● do_execve()
● do_execveat_common()
● bprm_execve()

Linux Process Creation

● libc execve()
● kernel sys_execve()
● do_execve()
● do_execveat_common()

○ Initialize linux_binprm
● bprm_execve()

○ Create and run task

Linux Process Creation

● The linux_bprm struct holds the
context for a process during
program load

○ mm - memory map
○ p - top of memory (stack)

Linux Process Creation

● The linux_bprm struct holds the
context for a process during
program load

○ executable - target binary
○ interpreter - linker
○ fdpath – full path of target binary
○ buf - ELF header

Linux Process Creation

● bprm_execve()
○ set uid/gid and privileges

■ prepare_bprm_creds()

○ open file descriptors
■ do_open_execat()

○ select cpu, add to scheduler
■ sched_exec()

○ exec_binprm()

Linux Process Creation

● exec_binprm()
○ Load current target binary

■ search_binary_handler()

■ fmt->load_binary()

■ load_elf_binary()

○ Load interpreter if needed
■ Set interpreter as target ELF entry

○ Run the scheduled task

Linux Process Creation

● search_binary_handler() cycles the
available format handlers and attempts
to execute the associated load_binary
function

● load_binary() functions validate the
magic header of the binary and continue
if the appropriate binary handler was
located

Linux ELF Loader

● Binary format handlers are registered
in the init functions of their respective
modules (binfmt_elf.c, binfmt_aout.c)

● For ELF files this is binfmt_elf.c and
the loader function is load_elf_binary()

Linux ELF Loader

● load_elf_binary()

Linux ELF Loader

● load_elf_binary()
○ Attempt to locate a

PT_INTERP program header
and determine interpreter file
format

Linux ELF Loader

● load_elf_binary()
○ Attempt to locate a

PT_INTERP program header
and determine interpreter file
format

○ Map the binary into memory
via elf_map() Map pages for
the bss and heap

Linux ELF Loader

● load_elf_binary()
○ Call load_elf_interp() if the binary is

dynamically linked and set the entry point
to the mapped interpreter's address

Linux ELF Loader

● load_elf_binary()
○ Call load_elf_interp() if the binary is

dynamically linked and set the entry point
to the mapped interpreter's address

○ Copy the process's environment,
arguments, credentials, and the elf_info
struct to the stack via create_elf_tables()

Linux ELF Loader

● load_elf_binary()
○ Call load_elf_interp() if the binary is

dynamically linked and set the entry point
to the mapped interpreter's address

○ Copy the process's environment,
arguments, credentials, and the elf_info
struct to the stack via create_elf_tables()

○ Finally, begin execution of the new task
via start_thread() and return to userspace

Linux ELF Loader

● At this point the process has been created, memory populated, and
thread scheduled

● The process context is initialized, elf_entry is set to the linker entry
point in the case of dynamic binaries

ebpf-elf-trace

ebpf-elf-trace

ebpf-elf-trace

ebpf-hasher

● Using our hooks we can now intercept loaded programs to hash them

● We need to select a hash small enough to fit in the constraints of a
eBPF program (limited loops and instruction count)

● I am currently using MurmurHash2 but it’s a minor detail

ebpf-hasher

Hashing Executables

● The demo shows a small hash being performed due to stack size limits,
turning this into an iterative hash loop would solve that

● Alternatively, in our current hooks we can find the load addresses of
the various segments in the main ELF binary that is being loaded

● This PoC is only hashing the main binary, we would really want to use
additional hooks for shared library loads

Logging Hashes for “Telemetry”

● We could use perf events to send
information from our eBPF
program to our userland process

● This is now “telemetry” which
could then send data back to the
mothership similar to common AV
solutions

eBPF Writing Process Memory

● eBPF cannot write to kernel memory, but we can write to writable
pages in user memory from a usermode hook context

● We need to hook a userland function. To do this early and in a
universal way, we can hook ld-linux.so which will be linked into all
dynamic processes

Linux ELF Linker (ld-linux.so)

● The kernel is nice
enough to provide
a System.map with
many symbol
locations for
hooking, ld-
linux.so is less
exposed.

ebpf-squirt-rop

● For our next trick, we can
hook the userland linking of
the process and inject a ROP
payload onto the stack. For
now a simple demo of
callstack control

ebpf-squirt-rop

● For our next trick, we can
hook the userland linking of
the process and inject a ROP
payload onto the stack. For
now a simple demo of
callstack control

ebpf-squirt-rop

● For our next trick, we can
hook the userland linking of
the process and inject a ROP
payload onto the stack. For
now a simple demo of
callstack control

ebpf-squirt-edr

● Combining these ideas we can enforce ACL rules on processes to
cause them to force terminate via an injected ROP payload.

● For the demo, we are just terminating all instances of /usr/bin/id
based on the hash from the main executable ELF entry point

ebpf-squirt-library

● One last demo – hooking dlopen on specific processes (sudo) to
inject our own library

ebpf-squirt-library

● One last demo – hooking dlopen on specific processes (sudo) to
inject our own library

The Future of eBPF

● Linux
○ eBPF is here to stay as an integral component

● Windows
○ It appears with the eBPF design Microsoft wants to run this in production

without boot flags guarding it (unlike dtrace)
● Others?

○ eBPF language and interpreters will exist outside of kernels as well..

uBPF

● BSD licensed front end for the BPF language
● Very fast, similar to luajit, can be used in user applications
● Includes the bytecode compiler and optional JIT engine
● Currently selected as the frontend for Microsoft’s upcoming eBPF

● Let’s fuzz it!

uBPF vs AFL++

● uBPF w/o JIT enabled

uBPF vs AFL++

● uBPF with JIT enabled

Microsoft PREVAIL

● eBPF Verifier
○ abstract interpretation engine

acts as a security module
○ eBPF bytecode is first analyzed

before being passed to uBPF
with kernel privileges

● Let’s fuzz it!

PREVAIL vs AFL++

● bpf-verifier fuzzing results

Bonus: drmemory $pc corruption bug?

● bpf-verifier fuzzing result caused bad $rip

Bonus: Python eBPF EDR loader DoS?

● Write to the Python JIT page to cause python to terminate or execute
injected pyc code, VMware Carbon Black ships with example sensor
using python.. But recent kernel change broke my demo? FAIL 

Bonus
: eBPF
kernel
crash!

Thank you!

https://github.com/richinseattle/ebpf-
tools
rjohnson@fuzzing.io

https://github.com/richinseattle/ebpf-tools
mailto:rjohnson@fuzzing.io

END

CoRE

pahole

● Use pahole to convert dwarf symbols into format required for CoRE

ebpf-squirt-rop systemd init

● clock_gettime routinely fires from all programs, we can hook it and
filter on pid==1 if we want to take over systemd init process (which
can never die so is ideal for migrating to for payloads

